)3-2004		
Max.	Marks	: 100
)3-2004 Max. Marks

1. Let X be a n-dimensional normed linear space. Let $L: X \to C^n$ be a linear map. Show that L is continuous.

Time: 3 hrs

2. Let $M = \{ f \in C([0,1]) : f' \text{ exists and is continuous} \}$. Define $||f||_* = ||f|| + ||f'||$. Show that $||||_*$ is a norm on M. [10]

[15]

- 3. State and prove the open mapping theorem. [15]
- 4. Let X and Y be Banach spaces. Let $T \in L(X,Y)$ be a compact operator. Show that T^* is a compact operator. $\left[15\right]$
- 5. Let $\{f_n\}_{n\geq 1} \subset L^2(R)$ be a complete ortho normal sequence. Define $\Psi : L^2(R) \to \ell^2$ by $\Psi(f) = (\int f\bar{f}_n dx)_{n\geq 1}$. Show that Ψ is an onto isometry. [15]
- 6. Let H be a Hilbert space. Suppose $N \in L(H)$ is a normal operator. Show that λ is an eigen value of N if and only if $\overline{\lambda}$ is an eigen value of N^* . $\left[15\right]$
- 7. Let K be a compact Hausdorff space. Let $f: K \to \ell^2$ be a continuous map. Define $T: \ell^2 \to C(K)$ by $T(\alpha)(k) = \langle \alpha, f(k) \rangle$. Show that T is a well-defined, bounded linear map. [15]